Conda environment for RNA-Seq
conda create -n RNASEQ_bch709 -c bioconda -c conda-forge -c r sra-tools minimap2 trinity star trim-galore gffread seqkit kraken2 samtools multiqc subread
conda activate RNASEQ_bch709
Conda Environment for DEG
conda create -n DEG_bch709 -y
conda activate DEG_bch709
conda install -y -c bioconda -c conda-forge mamba
mamba install -y -c bioconda -c conda-forge r-gplots r-fastcluster=1.1.25 bioconductor-ctc bioconductor-deseq2 bioconductor-qvalue bioconductor-limma bioconductor-edger bioconductor-genomeinfodb bioconductor-deseq2 r-rcurl trinity bedtools intervene r-UpSetR r-corrplot r-Cairo pybedtools
Publication (Arabidopsis)
A Vitis vinifera basic helix–loop–helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield Sung Don Lim,Won Choel Yim,Degao Liu,Rongbin Hu,Xiaohan Yang,John C. Cushman https://doi.org/10.1111/pbi.12898
DEG analaysis
The question will provide 12 RNA-Seq reads files associated with four different conditions. You might need to compare empty vector vs. CEB1 transformation line in leaf and root samples. The reads and reference file will be provided.
- Trim the reads by Trim-Galore
- Align the reads by STAR
- Count reads per gene by FeatureCount2
- Quality control by PtR
- DEG calculation by DESeq2
MultiQC report
Generate MultiQC report
Draw Venn diagram
The question will ask you to draw 4-way Venn diagram from DEG analysis.
Gene expression
The question will ask you to provide TPM value for one gene.
Gene Ontology analysis
The question will ask you to use Metascape http://metascape.org/gp/index.html for DEG set.
Seqkit and BLAST
The question will ask you to find protein sequence from one of DEG gene and ask you to run BLAST analaysis.
Submitted batch file
Slurm submission files need to be uploaded.
Trim-galore
cd ~/bch709_scratch/RNA-Seq_example/ATH
nano trim.sh
#!/bin/bash
#SBATCH --job-name=trim_ATH
#SBATCH --cpus-per-task=2
#SBATCH --time=2-15:00:00
#SBATCH --mem=16g
#SBATCH --mail-type=all
#SBATCH --mail-user=<PLEASE CHANGE THIS TO YOUR EMAIL>
#SBATCH -o trim.out # STDOUT & STDERR
#SBATCH --account=cpu-s5-bch709-2
#SBATCH --partition=cpu-core-0
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761506 raw_data/SRR1761506_1.fastq.gz raw_data/SRR1761506_2.fastq.gz --fastqc
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761507 raw_data/SRR1761507_1.fastq.gz raw_data/SRR1761507_2.fastq.gz --fastqc
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761508 raw_data/SRR1761508_1.fastq.gz raw_data/SRR1761508_2.fastq.gz --fastqc
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761509 raw_data/SRR1761509_1.fastq.gz raw_data/SRR1761509_2.fastq.gz --fastqc
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761510 raw_data/SRR1761510_1.fastq.gz raw_data/SRR1761510_2.fastq.gz --fastqc
trim_galore --paired --three_prime_clip_R1 5 --three_prime_clip_R2 5 --cores 2 --max_n 40 --gzip -o trim --basename SRR1761511 raw_data/SRR1761511_1.fastq.gz raw_data/SRR1761511_2.fastq.gz --fastqc
Create reference index
cd ~/bch709_scratch/RNA-Seq_example/ATH/reference
ls -algh
nano index.sh
#!/bin/bash
#SBATCH --job-name=index_ATH
#SBATCH --cpus-per-task=12
#SBATCH --time=2-15:00:00
#SBATCH --mem=48g
#SBATCH --mail-type=all
#SBATCH --mail-user=<PLEASE CHANGE THIS TO YOUR EMAIL>
#SBATCH -o index.out # STDOUT & STDERR
#SBATCH --account=cpu-s5-bch709-2
#SBATCH --partition=cpu-core-0
STAR --runThreadN 48g --runMode genomeGenerate --genomeDir . --genomeFastaFiles phytozome/phyto_mirror/Athaliana_167_10/assembly/Athaliana_167.fa --sjdbGTFfile TAIR10_GFF3_genes.gtf --sjdbOverhang 99 --genomeSAindexNbases 12
Mapping the reads to genome index
cd ~/bch709_scratch/RNA-Seq_example/ATH/
ls -algh
nano align.sh
#!/bin/bash
#SBATCH --job-name=align_ATH
#SBATCH --cpus-per-task=8
#SBATCH --time=2-15:00:00
#SBATCH --mem=32g
#SBATCH --mail-type=all
#SBATCH --mail-user=<PLEASE CHANGE THIS TO YOUR EMAIL>
#SBATCH -o align.out # STDOUT & STDERR
#SBATCH --account=cpu-s5-bch709-2
#SBATCH --partition=cpu-core-0
#SBATCH --dependency=afterok:<PREVIOUS_JOBID(trim_ATH)>
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761506_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761506_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761506.bam
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761507_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761507_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761507.bam
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761508_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761508_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761508.bam
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761509_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761509_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761509.bam
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761510_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761510_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761510.bam
STAR --runMode alignReads --runThreadN 8 --readFilesCommand zcat --outFilterMultimapNmax 10 --alignIntronMin 25 --alignIntronMax 10000 --genomeDir ~/bch709_scratch/RNA-Seq_example/ATH/reference/ --readFilesIn ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761511_val_1.fq.gz ~/bch709_scratch/RNA-Seq_example/ATH/trim/SRR1761511_val_2.fq.gz --outSAMtype BAM SortedByCoordinate --outFileNamePrefix ~/bch709_scratch/RNA-Seq_example/ATH/bam/SRR1761511.bam
Featurecount
featureCounts -p -a <GENOME>.gtf <SAMPLE1>.bam <SAMPLE2>.bam <SAMPLE3>.bam ...... -o counts.txt
conda activate RNASEQ_bch709
cd ~/bch709_scratch/RNA-Seq_example/ATH/bam
featureCounts -o ATH.featureCount.cnt -p -a ~/bch709_scratch/RNA-Seq_example/ATH/reference/TAIR10_GFF3_genes.gtf SRR1761506.bamAligned.sortedByCoord.out.bam SRR1761509.bamAligned.sortedByCoord.out.bam SRR1761507.bamAligned.sortedByCoord.out.bam SRR1761510.bamAligned.sortedByCoord.out.bam SRR1761508.bamAligned.sortedByCoord.out.bam SRR1761511.bamAligned.sortedByCoord.out.bam
conda activate RNASEQ_bch709
cd ~/bch709_scratch/RNA-Seq_example/Mmusculus/bam
featureCounts -o Mmusculus.featureCount.cnt -p -a ~/bch709_scratch/RNA-Seq_example/Mmusculus/reference/GCF_000001635.27_GRCm39_genomic.gtf -g "gene_name" <YOUR BAM FILES>
TPM and FPKM calculation
cut -f1,6- ATH.featureCount.cnt | egrep -v "#" | sed 's/\Aligned\.sortedByCoord\.out\.bam//g; s/\.bam//g' > ATH.featureCount_count_length.cnt
python /data/gpfs/assoc/bch709-2/Course_material/script/tpm_raw_exp_calculator.py -count ATH.featureCount_count_length.cnt
ATH DEG
cd ~/bch709_scratch/RNA-Seq_example/ATH
mkdir DEG
cd DEG
cp ~/bch709_scratch/RNA-Seq_example/ATH/bam/ATH.featureCount* .
cut -f1,7- ATH.featureCount.cnt | egrep -v "#" | sed 's/\.bamAligned\.sortedByCoord\.out\.bam//g; s/\.TAIR10//g' > ATH.featureCount_count_only.cnt
PtR (Quality Check Your Samples and Biological Replicates)
Once you’ve performed transcript quantification for each of your biological replicates, it’s good to examine the data to ensure that your biological replicates are well correlated, and also to investigate relationships among your samples. If there are any obvious discrepancies among your sample and replicate relationships such as due to accidental mis-labeling of sample replicates, or strong outliers or batch effects, you’ll want to identify them before proceeding to subsequent data analyses (such as differential expression).
PtR --matrix ATH.featureCount_count_only.cnt --samples samples.txt --CPM --log2 --min_rowSums 10 --sample_cor_matrix --compare_replicates
DEG calculation
run_DE_analysis.pl --matrix Drosophila.featureCount_count_only.cnt --method DESeq2 --samples_file samples.txt --output rnaseq
DEG subset
cd rnaseq
## 4-fold and p-value 0.01
analyze_diff_expr.pl --samples ~/bch709_scratch/RNA-Seq_example/ATH/DEG/samples.txt --matrix ~/bch709_scratch/RNA-Seq_example/ATH/DEG/ATH.featureCount_count_length.cnt.tpm.tab -P 0.01 -C 2 --output ATH
## 2-fold and p-value 0.01
analyze_diff_expr.pl --samples ~/bch709_scratch/RNA-Seq_example/ATH/DEG/samples.txt --matrix ~/bch709_scratch/RNA-Seq_example/ATH/DEG/ATH.featureCount_count_length.cnt.tpm.tab -P 0.01 -C 1 --output ATH
DEG output
ATH.matrix.log2.centered.sample_cor_matrix.pdf
ATH.matrix.log2.centered.genes_vs_samples_heatmap.pdf
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C2.ABA-UP.subset
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C2.Control-UP.subset
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C2.DE.subset
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C1.ABA-UP.subset
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C1.Control-UP.subset
ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C1.DE.subset
Venn diagram
Intervene installation
mamba install -c bioconda bedtools intervene r-UpSetR=1.4.0 r-corrplot r-Cairo
cd ~/bch709_scratch/RNA-Seq_example/ATH/DEG/rnaseq
cut -f 1 ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C2.ABA-UP.subset | grep -v sample > DESeq.UP_4fold.subset
cut -f 1 ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C2.Control-UP.subset | grep -v sample > DESeq.DOWN_4fold.subset
cut -f 1 ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C1.ABA-UP.subset | grep -v sample > DESeq.UP_2fold.subset
cut -f 1 ATH.featureCount_count_only.cnt.ABA_vs_Control.DESeq2.DE_results.P0.01_C1.Control-UP.subset | grep -v sample >DESeq.DOWN_2fold.subset
wc -l DESeq*subset
701 DESeq.DOWN_2fold.subset
227 DESeq.DOWN_4fold.subset
1218 DESeq.UP_2fold.subset
463 DESeq.UP_4fold.subset
2609 total
intervene venn --type list --save-overlaps -i DESeq.DOWN_2fold.subset DESeq.DOWN_4fold.subset DESeq.UP_2fold.subset DESeq.UP_4fold.subset
intervene upset --type list --save-overlaps -i DESeq.DOWN_2fold.subset DESeq.DOWN_4fold.subset DESeq.UP_2fold.subset DESeq.UP_4fold.subset
Seqkit
seqkit grep -p {ID} {Protein sequence}
seqkit grep -p AT4G28110.1 Athaliana_167_TAIR10.cds_primaryTranscriptOnly.fa -o AT4G28110.1.aa
BLAST
PR1_CDS MNFTGYSRFLIVFVALVGALVLPSKAQDSPQDYLRVHNQARGAVGVGPMQWDERVAAYARSYAEQLRGNCRLIHSGGPYGENLAWGSGDLSGVSAVNMWVSEKANYNYAANTCNGVCGHYTQVVWRKSVRLGCAKVRCNNGGTIISCNYDPRGNYVNEKPY
PR1_CDS ATGAATTTTACTGGCTATTCTCGATTTTTAATCGTCTTTGTAGCTCTTGTAGGTGCTCTTGTTCTTCCCTCGAAAGCTCAAGATAGCCCACAAGATTATCTAAGGGTTCACAACCAGGCACGAGGAGCGGTAGGCGTAGGTCCCATGCAGTGGGACGAGAGGGTTGCAGCCTATGCTCGGAGCTACGCAGAACAACTAAGAGGCAACTGCAGACTCATACACTCTGGTGGGCCTTACGGGGAAAACTTAGCCTGGGGTAGCGGTGACTTGTCTGGCGTCTCCGCCGTGAACATGTGGGTTAGCGAGAAGGCTAACTACAACTACGCTGCGAACACGTGCAATGGAGTTTGTGGTCACTACACTCAAGTTGTTTGGAGAAAGTCAGTGAGACTCGGATGTGCCAAAGTGAGGTGTAACAATGGTGGAACCATAATCAGTTGCAACTATGATCCTCGTGGGAATTATGTGAACGAGAAGCCATACTAA